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We describe a search for production of a charged Higgs boson, qq̄′→H+, reconstructed in the tb̄
final state in the mass range 180 ≤ MH+ ≤ 300 GeV. The search was undertaken at the Fermilab
Tevatron collider with a center-of-mass energy

√
s = 1.96 TeV and uses 0.9 fb−1 of data collected

with the D0 detector. We find no evidence for charged Higgs boson production and set upper limits
on the production cross section in the Types I, II and III two-Higgs-doublet models (2HDMs). An
excluded region in the (MH+ , tanβ) plane for Type I 2HDM is presented.

PACS numbers: 12.60.Fr; 13.85.Rm; 14.65.Ha; 14.80.Cp



4

In the standard model (SM), one SU(2) doublet in-
duces electroweak symmetry breaking, which leads to
a single elementary scalar particle: the neutral Higgs
boson. Two SU(2) doublets perform the task of elec-
troweak symmetry breaking in two-Higgs-doublet models
(2HDMs) [1]. This leads to five physical Higgs bosons
among which two carry charge. Hence the discovery
of a charged Higgs boson would be unambiguous evi-
dence of new physics beyond the SM. Various types of
2HDMs are distinguished by their strategy for avoiding
flavor-changing neutral currents (FCNCs). In the Type I
2HDM, only one of these doublets couples to fermions.
In the Type II 2HDM, a symmetry is imposed so that one
doublet couples to up-type fermions and the other cou-
ples to down-type fermions; an approach used in minimal
supersymmetry extensions [1]. In Type III 2HDMs, both
doublets couple to fermions, no symmetry is imposed and
FCNCs are avoided by other methods. For example, in
one Type III model, FCNCs are suppressed by the small
mass of the first and second generation quarks [2].

In this Letter we present the first search for a charged
Higgs boson (H+) directly produced by quark-antiquark
annihilation, and decaying into the tb̄ [3] final state,
in the 180 ≤ MH+ ≤ 300 GeV mass range. In most
models this decay dominates for large regions of param-
eter space when the H+ mass (MH+) is greater than
the mass of the top quark (mt). Exploring the mass
range MH+ > mt is complementary to previous Teva-
tron searches [4] that have been performed in top quark
decays for the MH+ < mt region. We analyze 0.9 fb−1

of data from pp̄ collisions at a center-of-mass energy of√
s = 1.96 TeV recorded from August 2002 to Decem-

ber 2006 using the D0 detector [5]. Since the D0 single
top quark analysis [6] reconstructs precisely the same fi-
nal state in the s-channel W+ → tb̄ process, we use the
dataset from that search.

Direct searches for a charged Higgs boson have been
performed at the CERN e+e− collider (LEP) [7] and
the Fermilab Tevatron collider [4], while indirect searches
have been undertaken at the B factories [8, 9]. No ev-
idence for H+ has been found so far. Limits on the
charged Higgs mass and the ratio of vacuum expecta-
tion values of the two Higgs fields (tanβ) are typically
calculated in the context of the Type II 2HDM [10].
The combined results from the LEP experiments and
those from B factories yield MH+ > 78.6 GeV [10] and
MH+ > 295 GeV [8], respectively, at the 95% C.L. and
assuming Type II 2HDM.

The charged Higgs Yukawa couplings carry informa-
tion about new physics beyond the SM and it has been
noted that 2HDM couplings in Types I and II 2HDM can
be quite large [11]. For a Type III 2HDM, large contri-
butions from heavy quark-antiquark annihilation can be
expected if the top-quark/charm-quark mixing parame-
ter (ξUtc) is large [2]. In many models, if MH+ > mt, then
the branching fraction of the charged Higgs boson to tb̄

is of order unity, owing to the mass dependence of the
couplings and the large top quark mass.

We use the program comphep [12] to simulate charged
Higgs boson production and selected decay qq̄′ → H+ →
tb̄ → W+bb̄ → `+νbb̄ where ` represents an electron or
muon. This is done for seven MH+ values ranging from
180 to 300 GeV. The lower mass value is dictated by
the kinematics of the decay H+ → tb̄ which requires
MH+ > mt + mb, where mb is the mass of the bottom
quark. The upper mass value is chosen based on the
fact that, in this mass range, the production cross sec-
tion decreases by approximately an order of magnitude
for any of the models considered. The couplings are set
to produce pure chiral state samples that are combined
in different proportions to simulate the desired 2HDM
type. The size of the interference term proportional to
the product of the left and right-handed couplings is con-
sidered negligible. The size of this interference term is of
order 1% of the total amplitude in the tanβ < 30 region
for the Type II 2HDM, much less than 1% for the Type I
2HDM and non-relevant for a Type III 2HDM. Each
choice of couplings determines the total width, ΓH+ , and
the initial-state quark flavor composition. This quark fla-
vor composition of the signal samples is determined by
the value of the element |Vij | of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [13] and the CTEQ6L1 parton
distribution functions (PDFs) [16]. In these simulated
signal samples, ΓH+ ranges from approximately 4 GeV
for MH+ = 180 GeV to 9 GeV for MH+ = 300 GeV.

In order to simulate the kinematic distributions
of a particular model, the left-handed and right-
handed signal samples are combined with event
weights equal to the fraction of the production cross
section associated with the left-handed or right-
handed coupling contribution. The Type II 2HDM
couplings for right-handed (R) and left-handed (L)

chiral states are V qq
′

CKMgmq′ tanβ/(
√

2MW ) and

V qq
′

CKMgmq cotβ/(
√

2MW ), where V qq
′

CKM is the CKM
matrix element, mq/mq′ the up/down-type quark
mass, MW the mass of the W boson and g the
SM weak coupling constant. The R(L) couplings in
Type I and III 2HDMs are Vqq′gmq′ tanβ/(

√
2MW )

(−Vqq′gmq tanβ/(
√

2MW )) and −(VCKMŶD)qq′

((Ŷ †UVCKM)qq′), where Ŷ U,Dij =ξ
√

2mimj/v, v is the
vaccum expectation value and ξ is taken as a free
parameter of the model. For the simulation of Type I
2HDM, left-handed and right-handed samples are added
in equal proportion. For the simulation of Type II
2HDM, signal samples are combined to simulate four
tanβ values or ranges: tanβ < 0.1, tanβ = 1, tanβ = 5,
and tanβ > 10. The Type I 2HDM and tanβ = 1
Type II models share the same left/right-handed
proportions. For the Type III 2HDM as described
in [2], quark-antiquark annihilation is dominated by
right-handed couplings. This model is simulated using
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the same proportions of left-handed and right-handed
samples as used to simulate the tanβ > 10 Type II
model. This approach provides an adequate simulation
of signal event kinematics only for model parameter
values that result in a charged Higgs width comparable
or smaller than the experimental mass resolution of
O(10) GeV.

Background contributions from W+jets and top quark
pair (tt̄) production are modeled using the alpgen
Monte Carlo (MC) event generator [14]. The single top
quark samples are generated with the SingleTop [15]
MC event generator. For both samples, we assume a top
quark mass of 175 GeV and use the CTEQ6L1 PDFs. Af-
ter generation, the events are passed through a geant-
based simulation [17] of the D0 detector and subsequently
through standard reconstruction procedures that correct
differences between the simulation and data.

The background contribution from misreconstructed
multijet events is modeled using data events containing
misidentified leptons and is normalized to the signal data
together with the W+jets sample, which contains leptons
from the W boson decay [6].

We search for charged Higgs bosons in the H+ →
tb̄ → `+νbb̄ final state, and hence require that events
satisfy triggers with a jet and an electron or muon. Se-
lections that are identical to the two-jet analysis chan-
nel for the D0 single top quark analysis [6] are imposed
on each observable in the data, background and charged
Higgs boson signal samples to select events with tb̄ final
state signatures. Events are required to have a primary
vertex with three or more tracks attached and a lepton
originating from the primary vertex [6]. The electron
(muon) channel selection requires only one isolated elec-
tron (muon) with ET > 15 (pT > 18) GeV within the
pseudorapidity region |η| < 1.1 (2.0). Events with two
isolated leptons are rejected. For both channels, events
are required to have missing transverse energy within
15 < 6ET < 200 GeV. We require that events have exactly
two jets, with the highest pT jet satisfying pT > 25 GeV
and |η| < 2.5, and the second jet satisfying pT > 20 GeV
and |η| < 3.4.

Since both jets of the signal events are b jets, we se-
lect data events having one or two jets identified as such
via a neural network-based tagging algorithm [18]. MC
simulated events are weighted using a b-tag probability
derived from data. The signal acceptances after the com-
plete selection increase monotonically in the mass range
200 < MH+ < 300 GeV, for example, from (0.48±0.06)%
to (1.24± 0.20)% for tanβ < 0.1, statistical and system-
atic uncertainties included. The signal acceptances for a
given MH+ decreases by at most 0.12% with increasing
tanβ.

A distinctive feature of signal events is the large mass
of the charged Higgs boson. We therefore use the re-
constructed invariant mass of the top and bottom quark
system as the discriminating variable for the charged
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FIG. 1: Distribution of the discriminating variable,
M(jet1, jet2,W ), for the signal, background model and data,
for the combined electron and muon channels with exactly two
jets and with one or two b tags. The signal distributions cor-
respond to a Type III 2HDM for charged Higgs boson masses
180, 240, 300 GeV, and are normalized according to the pro-
duction cross section presented in Ref. [2] scaled by a factor
of 50.

Higgs signal. We define this variable as the invariant
mass M(jet1, jet2,W ). In the reconstruction of the W
boson, there are up to two possible solutions for the neu-
trino momentum component along the beam axis (pz).
In these cases, the solution with the smallest absolute
value of the pz momentum is chosen. Figure 1 shows the
M(jet1, jet2,W ) distribution after selection, with an ex-
ample signal normalized to the production cross section
for a Type III 2HDM [2] and for three different mass
values.

The data yield for all analysis channels combined
amounts to 697 events, after the complete selection. Sim-
ilarly, for the sum of all background sources, the total
expected yield is 721±42. For the separate background
sources, the yields are 531 for W+jets, 95 for multijets,
59 for tt̄ and 36 for the single top background.

The systematic uncertainties on the signal and back-
ground model are estimated using the methods described
in Ref. [6]. Two of the dominant sources of systematic
uncertainty arise from the jet energy scale (JES) correc-
tion uncertainty and the uncertainty on the b-tag rates
applied to MC events (described above). For the H+ sig-
nal, the uncertainty on the model-dependent proportion
of initial-state parton flavor contribution plays a domi-
nant role. Simulated signal events with different exclu-
sive initial-state quark combinations are used to assess
the latter source of uncertainty. A value of 10% is as-
signed based on variations in yield and shape of the re-
constructed invariant mass distribution.

We observe no excess of data over background and pro-
ceed to set upper limits on H+ boson production. We
construct a binned likelihood function and use Bayesian
statistics to calculate upper limits on the signal produc-
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TABLE I: Observed limits on the production cross section
(in pb) times branching fraction σ(qq̄′ → H+)×B(H+ → tb̄).
The expected limits are shown in parenthesis for comparison.
These limits apply to the Type II 2HDM. The limits obtained
for tanβ = 1 and tanβ > 10 are also valid for Type I and
Type III 2HDMs, respectively. Limits shown in square brack-
ets are only valid for the general production of a charged
scalar via a purely left-handed coupling with width smaller
than the experimental resolution. These limits are not valid
for the production of a charged Higgs boson in Type II 2HDM
since the charged Higgs width is expected to be larger than
the experimental resolution.

MH+ (GeV) tanβ < 0.1 tanβ = 1 tanβ = 5 tanβ > 10
180 12.9 (11.4) 14.3 (12.2) 13.7 (11.7) 13.7 (12.2)
200 [ 5.9 (9.6) ] 6.3 (9.9) 6.5 (10.0) 6.5 (10.0)
220 [ 2.9 (4.2) ] 3.0 (4.4) 3.0 (4.5) 3.0 (4.5)
240 [ 2.3 (3.1) ] 2.4 (3.3) 2.6 (3.5) 2.6 (3.5)
260 [ 3.0 (2.8) ] 3.0 (2.9) 3.0 (3.0) 3.0 (3.0)
280 [ 4.0 (2.6) ] 4.2 (2.7) 4.5 (2.9) 4.5 (2.9)
300 [ 4.5 (2.4) ] 4.7 (2.4) 4.9 (2.5) 4.9 (2.5)

tion cross section times the branching fraction (σ×B) to
the tb̄ final state. A flat positive prior is used for the sig-
nal cross section. All sources of systematic uncertainty
and their correlations are taken into account in calculat-
ing σ × B upper limits for different 2HDM types at the
95% C.L. At the level of precision reported, the observed
limits are insensitive to changes in top mass in the range
170 < mt < 175 GeV. The observed and expected σ × B
limits are reported in Table I.

The σ × B upper limits obtained are compared to the
expected signal cross section in the Type I 2HDM to
exclude a region of the MH+ and tanβ parameter space,
shown in Fig. 2. The analysis sensitivity is currently not
sufficient to exclude regions of tanβ < 100 in the Type II
2HDM. In a Type III 2HDM [2], the charged Higgs boson
width depends quadratically on the mixing parameter ξ.
This limits our ability to exclude regions in the MH+ and
ξ parameter space.

In summary, we have performed the first direct search
for the production of charged Higgs bosons in the re-
action qq̄′ → H+ → tb̄ and we have presented limits
on the production cross section times branching frac-
tion for Types I, II and III 2HDMs in the mass range
180 ≤ MH+ ≤ 300 GeV. A region in the MH+ vs tanβ
plane has been excluded at the 95% C.L. for Type I
2HDMs.

We thank the staffs at Fermilab and collaborating
institutions, and acknowledge support from the DOE
and NSF (USA); CEA and CNRS/IN2P3 (France);
FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ,
FAPESP and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico);
KRF and KOSEF (Korea); CONICET and UBACyT
(Argentina); FOM (The Netherlands); STFC (United
Kingdom); MSMT and GACR (Czech Republic); CRC

βtan 
10 20 30 40 50 60 70

 [
G

eV
]

H
+

M

180

185

190

195
Excluded region 2HDM Type I

 > 50 GeV)H+Γvalid (
Region where analysis is not

-1DØ 0.9 fb

βtan 
10 20 30 40 50 60 70

 [
G

eV
]

H
+

M

180

185

190

195

FIG. 2: The 95% C.L. excluded region in the MH+ vs tanβ
space for Type I 2HDM. The region for which ΓH+ > 50 GeV
indicates the approximate area where the charged Higgs width
is significantly larger than the detector resolution and hence
the analysis is not valid.

Program, CFI, NSERC and WestGrid Project (Canada);
BMBF and DFG (Germany); SFI (Ireland); The Swedish
Research Council (Sweden); CAS and CNSF (China);
and the Alexander von Humboldt Foundation (Ger-
many).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from II. Physikalisches Institut, Georg-August-

University, Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Fin-

land.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
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